The takeaway message is that we don’t necessarily need to plant more trees when nature is doing it by itself, Poorter said.
For this study, more than 90 researchers from all over the world came together to analyse exactly how tropical forest regrowth takes place. They pored over data about forest recovery from three continents, 77 sites and 2,275 plots of land in the Americas and West Africa. From there, they evaluated 12 specific criteria, such as the soil, plant functioning, ecosystem structure and biodiversity, and more. They then modelled this data – without which they would have had to wait for over 100 years to see this happen in the real world – with a technique called chronosequencing, allowing them to infer long-term trends in forest recovery.
The researchers looked in particular at what happens to tropical forest land that has been used for agriculture or farming and is then abandoned after a couple of seasons. They found that the old forest portion – including some fertile soil, any residual trees, seed banks and maybe stumps that can resprout – created a nourishing, interconnected ecosystem for new forest to start to grow.
The researchers found that different aspects take, respectively, more or less time to recover to the levels of “old forest” before it was used. But overall, tropical forests can get back to roughly 78% of their old-growth status in just 20 years. “That’s tremendously fast – surprisingly fast,” Poorter said.
Of course, these are just calculations, and one of the constraints of chronosequence-based analyses is that every location analysed is assumed to have the same history and successional dynamics, said Eric Salas, a researcher in geospatial sciences at Central State University who was not involved in this study. So there can be some misinterpretation.